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Fred’' s Head

X-Ray Detector _ _
Intensity u(xy) is the density of

the unknown object
(Fred’s head)

X-Ray Source
Intensity




The Radon Transform

R = | u(xy) 8(p - x cosg-ysing) dcy
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Reconstruction Techniques

Image reconstruction techniques fall into two categories:

* Direct methods based on the Central Slice Theorem:

* [terative methods based on discretizing the reconstruction problem
as a matrix equation RX = b and applying an iterative solution
method.




lgebraic  econstruction
echnique

assume Uu(x,y) = ZO(J' ¢ (x,y)
1if (x,y) isin j th pixd

@) :{Oif (xy) natin j th pixd

IS contribution of pixel in
computing line integral
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lgebraic  econstruction
echnique

Leads to a large, sparse system

Ku =t

Sparsity pattern shown for
K, where the discretized
iImage is 10 x 10, M = 20
views are used, andn =5
strips cover each view.

Matrix is 100 x 100. One
row for each of the Mn
strips, one column for each
of the 10 x 10 pixels.




Natural Pixel

Define AL{Q) = R" by (Au),

ey
|
(W)

Discretization

Let Wi(X,y), Wo(X,y), ... PN(X,Y)
be characteristic functions

of the strips covered by the
x-rays (e.g., ¥j(x,y) shown

at left).

Let u(x,y) be supported in
some region (), covered
by the strips.

= fQu(x,y) Wi(x,y) dkdy = (W, u)

We refer to Au as the “strip-
averaged” Radon Transform.




Natural Pixel Discretization

The adjoint is given by:

CAu f) =3 f, <LIJj,u>
= <ijLIJj,u> =<{u A )

A-f =3 FWi(xy)

The action of the adjoint is to “spread” the values of the fj back
along the integral strips from which they came.

Hence A" f isa backprojection operator!




Solving Au =1

AL(Q) = R"

A is a short, fat, “matrix” , and the function ij(X,Y) IS the jth “row” of A:

- - - -G
- - WyxY) -

- WN(Y)

N X oo

Highly underdetermined, infinitely many §\(|)Iutions, SO we seeLk the
minimum norm solution, l.e., seek WLIR ™ such that u = A ~w
and AU = T . Such w gives minimum norm solution.

u=A"w




Optimal Grids

Examples of “optimal” grids for simple geometries:

2 views, 6 views, 6 views,
4 strips 3 strips 5 strips

If () isthe convex hull of the set of strips, the problem is
“unconstrained” (and retains some useful symmetries).

If Q) is a square (or other regular region) inside the support of the
strips, the problem is “constrained.”
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The Opti mal Grid

Puhgun

ﬂW@ﬁgygﬁ

!ﬁ%ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ@%
S N s e e S
a

:

T

-q

,ﬁﬁﬁ'

S

o
i
!'rﬁ-n_.'

i
LA

S e

1
LT

._..
ok
'-\_d'dﬂ'.ﬂl

RO

tn i

Example optimal grid.

M = 32 (no. of views)

n = 32 (strips per view)

N =1024




Solution satisfies A(A-w) = f
let B=AA®L

(W, W) (W, W) L (W, W)
(Wo, W) (W, Wo) ... (WyWy)

_<L|JN,L|J1> (W Wo) . <L|JN,L|JN>_

So the equation we wish to solve is:

Bw =1




Theorems about the matrix B

. Bij IS the area of the intersection of the ith and jth strip
pixels.

B Iis non-negative, symmetric, positive semidefinite.

o If there are M views, each with n parallel strips, then
N=Mn and B has block structure, where the (j,k)th block
IS nxn and gives the areas of intersection of the strips of

the jth and kth views : (Byy Bpp ... By |

B = 521 B22 -+ Boy

- B;;j is diagonal, and the diagonal entry b Is the area
of the ith strip pixel.

* In any block B;; , the sum of the entries on a row
equals the entry in that row of the diagonal block
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Sparsity and Unconstrained
Symmetry

For the unconstrained (convex
hull) case with M views and n
uniform strips per view, all (Mﬂ)
entries of the matrix are known
from The first n/2 rows in the
first (M/2+1) blocks.




Constant by Angle

Def: A vector v IS
.
V = | 00401... 0105050y... 0p0303... Oy Oy ... Oy |

l.e., where all the entries in v corresponding to a given view (angle)
are constant.

. VONS(B) iff Vis constant-by-angle and )9 =G,
» A basis for NS(B) is given as shown, where the entries +1 and -1

. represent n-vectors of all ones or minus ones,

. corresponding to entire views with those values.

« dmNSB) =M -1 and rank(B) =N-(M-1)

o Let Bk be the sum of the entries in V/ corresponding to the kth
view (angle). If B =B for all jand k then vU range( B)




Gauss-Saldel & Kaczmarz

Gauss-Seidel iteration: Kaczmarz iteration:

1) Find  such that 1) Find O such that
O -
<ej,A(u+o(ej) —f> =0 <ej,A(u+0(A ej) —f> =0

2)Set U« U+0€ 2)Set u<_(u+0(ALej)

J




Solution Methods (1)

e« Kaczmarz iteration on Au =f , where U = Z O(j q—.’j

» Converges moderately well, to minimum norm solution if f is in range
of A. Solution defined on natural pixel grid. Requires knowledge of B.

« Kaczmarz iteration on AU = f, where u = Zuj Pi(x,y) and Pj(x,Y) is
the characteristic function of the jth on the optimal grid.

« Converges moderately well to minimum norm solution if right-hand
side f is in range of A.

. expensive to implement.
» Kaczmarz iteration on Bw = f,

* Very slow to converge, converges to minimum norm solution if
right-hand side is in range of B.

e Gauss-Seidelon Bw =f !




Gauss-Seldel onBw = f.

Theorems about GSon Bw =f:

« GS on Bw =f cannot diverge in the energy seminorm, e.g. if W -
solves Bw="f then|||w(n+D —wU]||| < |||wlM —wD||]

where |llvl|] = <Bv,v ).

o« Let w(n*+1) _ Gg(wln) be (n+1)st sweep of GSon Bw = f .
Let u(n*D _ Kacz(u(M) be (n+1)st sweep of Kaczmarz on AU = T .

If u(d = A Ew(d then y(n+1) :ALw(n"'l)_

o If fis in range(B) then GS converges to w such that u=A “W is the
minimum 2-norm solution to AU = f.

- p(GS) <1 andif GSv = Av, [Al = 1,then vONS(B) .




A Gauss-Saldel Reconstruction

“Exact” image, used to Reconstruction using 25

create projection set, with sweeps of Gauss-Seidel
64 uniform-width strips at iterationon Bw = T .

each of 20 angles. Matrix Is
1280 x 1280.




Gauss-Saldel Performance

Logarithm of norm of the residual, ”f - Bw(n) ” 2 plotted as a function
of the number of iteration sweeps.

The iteration stalls after a few GS sweeps.
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Spectral Analysis of B

Logarithm of the eigenvalues. B is 592 x 592, with M = 20.
Components of the error from the “near null space” are slow to
converge under Gauss-Seidel iteration.

Log of eigenvaluss of B

Null space:
dimension
IS 19

“near null
Space”




GSon “good’ and “bad” modes

Residual norm of Bw = (

as a function of GS sweeps.

Initial guess = Vg0

Initial guess = V145




Gauss-Seldel on a“good” mode

Spectral decomposition of result of one GS sweep on Bw = (,
using the eigenvector V45 as initial guess.

Spectral plot, mode 15

For the “good” mode,
GS mixes modes
moderately, by exciting
minor contributions from
modes in the “near null
Space.”

0
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Gauss-Saldel on a“bad’” mode

Spectral decomposition of result of one GS sweep on Bw = (,
using the eigenvector Vg,q as initial guess.

Spectral plot, mode 540

For the “bad” mode, GS
mixes modes severely,
by exciting major
contributions from other
modes in the “near null
space.”

e .._..4.-,..~u._auLh4'jﬂM. L'IW l




The Good, the Bad, ...

The “good” mode is softly
undulating. Has algebraic
smoothness and is
eliminated from error
rapidly.

The “bad” mode has some
oscillatory behavior, but is
predominantly nearly null.

Not eliminated from error. s




Multilevel Projection Method (PML)

Tosolve Lu=T1; where L:H;=H, .

Intergrid transfer operators defined implicity as whatever operators
make the discretization diagram commute, ie.,

h
Igh is defined by PSZh = PSh | o .

2h h
7" is defined by pS™ = | 2'pS" .




Discretization by Projection

The projection discretized problem is:

h h h h
PT(LPSu=1) gving LN=pTpS

Define block subspaces Sih, | = 1. p sothat SHE Z Sih
i

Then: uh = a.ul (not necessarily a unigue representation).
- )]
J

Relaxation uh Gh( uh) s defined by:

Forl=1,2,...p,
h

h
LNuh + ul) = P"t" where uhO S
set uM — (uh + uh)

Solve PTi




Coarse-grid correction

The coarse-grid correction Ul CGh( un is defined by:

2h 2h 2h
solve PT LM(uh + PS5 w) =pPT ¢h

2h
set uh < (uh + P> w)

Hence, a two-grid PML method uf PMLh(uh) is given:
1) uh — G"(uh)

2) uh « cG"(uh

uh — PML(u)




PML on Image Reconstruction

\

Theorem: Let 50 = span{LIJj}_ ) so that Sh = range(A D).
J =

Then BW = T is a discretization by orthogonal projection of AU = f.

Guts of Proof: Foreachj=1,2,...N

= <u—PShu,LIJj> = (u-Aw ;)

= (U= 2 WW W) = (U ) = w (W W)
= AU — Bw.

Hence, the orthogonality of the projector requires that

AU = Bw




PML on Image Reconstruction

Theorem: Choose Sih = span{ LIJi} , the span of the ith strip pixel.

Then PML relaxation is simply point Gauss-Seidel applied to the matrix

equation Bw =T,
N/2

Theorem: Choose SZh = span{LIJth}

2n _ (h h
i = , Where L|JJ. = L|J2j +L|J2j ‘1
(coarse grid: the “fattened” strips by joining adjacent strips).
11

h 2hy T
|5, = (|
e = (1p7)

B = 17BN S

Then:

N
— XN
2

Hence the standard variational properties hold! Coarse grid operator B
has pairs of rows and columns of fine-grid B “lumped” together.

31




PML Images

Exact Image Reconstructed Image

Reconstructed using 3 PML V-cycles, 2 relaxation sweeps
downward and 1 relaxation sweep upward. 20 views, 32 strips
per view on fine level.




PML Images

Exact Image Reconstructed Image

Reconstructed using 3 PML V-cycles, 2 relaxation sweeps
downward and 1 relaxation sweep upward. 64 views, 64 strips
per view on fine level.




Performance: GSvs. PML

10

- PMLY

__ Gauss-Sedel

Logarithm of residual norm for Gauss-Seidel on Bw=f (solid line)
and PML method (dashed line). Plotted against work units (1 WU
equals the cost of one relaxation sweep on fine level)




FAC

(Fast Adaptive Composite Grid Method)

To do FAC we need a global coarse grid QZh, a local refinement
grid Qh, and a composite grid Q" , Which is the combination of the
global coarse and local refinement grids.

We also need intergrid transfer operators:

|ﬁ*1: ol _ of |h§h: ol ., o2

Composite grid to refinement grid Composite grid to global coarse grid

\

A~ h. ~2h h

Refinement grid to composite grid Global coarse grid to composite gri%5




FAC

(Fast Adaptive Composite Grid Method)

Once the grids and operators are defined, FAC proceeds in a
simple two-step process:

2NN

Zh 2h, ¢ h h
Step 1: f N F]\ (f -L uh) (restrict the composite residual to global grid)
-1

h h

u h + | oh U2h (add global correction to composite grid solution)

(solve the global coarse grid error equation)

Step 2: f 1 — |£\I(f 1 —L huh) (restrict the composite residual to refinement grid)

(solve the refinement grid error equation)

(add refinement correction to composite grid u)
36




The “ Spotlight” Grids

View 2 View 3 View 1 View 2

N
AN

N 0
N

Global N Local
Coarse Refinement

Grid Grid
Composite
Grid

N




Spotlight Tomography

We need to define grid functions AUZh, uh, uh | as well as operators
for the various grids, BZh, Bh, B

Use refinement strips in the same fashion as global coarse strips.
Order them after the global grid. Leads to composite grid problem:

~  _h Boh oh Bohh ) [ wh fan
B"WN =" \whichis [ / ’ (W j:

Bon Bhp /L wh fh

FAC is just block Gauss-Seidel on the

f2h

h_ gl } h
W — Bon 2n( Boh, nW")

-1, ¢h
Wh — Bh,h(f — Bh,ZhWZh)




Spotlight Tomography

Exact solution PML solution “Spotlight” solution

PML solution using 20 views, 32 strips per view, B is 640x640.

Spotlight solution uses PML strips, plus half-width refinement over the
central half of each view. Composite matrix is 1280x1280. Global
refinement at same scale requires 2560x2560 matrix.




Spotlight Tomography

Detail of global solution Detail of spotlight solution




Conclusions

* Natural pixel discretization of the image reconstruction problem
leads to iterative methods competitive with ART for quality of image
and efficiency.

e Combined with Multilevel Projection Methods, natural pixel
discretization yields a multigrid reconstruction algorithm producing
guality images faster than other algebraic methods.

 Natural pixels and PML can be combined to perform local
refinement of the image, leading to an efficient method of performing
“spotlight” tomography.




